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Abstract. In this paper we derive an evolution equation for the gluon density in soft gluon cascades emitted
from any colored source, in the leading logarithmic approximation of perturbative QCD. We show that
this equation has the same form as the BFKL equation in the forward case. An explicit expression for the
total cascade wavefunction involving an arbitrary number of soft gluons is obtained. Renormalization of
the colored source wavefunction turns out to be responsible for the reggeization of the source.

1 Introduction

The investigation of the hard scattering amplitude in the
kinematics where the invariant energy s is large while the
transfered momentum t is fixed is an important problem
of QCD. The solution of this problem in the leading loga-
rithmic approximation (LLA), collecting terms of the form
(αS ln s)n, was proposed about twenty five years ago, in
the BFKL equation [1]. These original papers were based
on an effective triple gluons vertex and a bootstrap con-
dition in the t-channel. This approach showed the rela-
tion between perturbative QCD and the reggeon calculus,
which was proposed a decade before. The main feature of
this work is the reggeization of the gluon, which appears
not to be elementary but composite, being a pole in the
complex momentum plane, with a color octet quantum
number. Another important result is that the pomeron
occurs as a bound state of two reggeized gluons in the sin-
glet color channel. Although the BFKL equation looks like
a ladder-type equation, it effectively sums up an infinite
number of t-channel gluons.

A few years ago a dipole picture was proposed [2–7].
It is based on subsequent emissions of soft gluons, which
iterates in the large Nc limit. In this approach elementary
degrees of freedom are made of the colored dipole. The
equation for the dipole density in this soft cascade turns
out to be identical to the BFKL equation, although it was
found in the multicolor limit, while the original BFKL was
derived for finite Nc.

In this paper we study distributions of soft gluons pro-
duced by a fast moving colored source. Our treatment is
based on the classical soft emission vertex which also un-
derlies the dipole model [8]. However, we deal with gluons
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at finite Nc rather than with dipoles at large Nc, and we
do not rely on the dipole notion in our approach. We show
that these distributions satisfy an evolution equation with
respect to the IR cut-off. This equation is similar to the
DGLAP equation [9–12] except that the evolution vari-
able is the longitudinal IR cut-off rather than the trans-
verse cut-off. The obtained equation for the density of soft
gluons has the same form as the forward BFKL equation.
In the case of scattering, a similar evolution equation with
respect to the longitudinal scale was obtained in [13].

Our paper is arranged as follows. After preliminary
recalling the linear classical cascades properties, we gen-
eralize them in order to incorporate non-abelian effects in
the LLA approximation. The main idea is that, despite
the complicated internal structure of the cascade of soft
gluons, the amplitude of soft emission from any gluon-
(quark-) like source is the same as the one off a single
gluon (respectively quark). This notion of soft classical
cascades emitted by eikonal sources has been elaborated
before by various authors [14–16]. Since we will intensively
use this notion, we give details of this idea for consistency.
Using this idea we obtain an equation describing the gluon
density in a colored source. The same technique, when
applied to QED, gives the same type of equation for the
photon density inside a charged object. We then give an
explicit expression for the total cascade wavefunction in-
volving arbitrary numbers of soft gluons, similar to the
multi-reggeon formula [1]. As an illustration, using this
expression we reproduce the double logarithmic Sudakov
form factor.

Our main results concern the relationship between par-
ticle reggeization in abelian and non-abelian theories and
their self-energy, and the fact that the cascade wavefunc-
tion has a structure similar to the multi-reggeon formula.
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2 Classical cascade

The asymptotic behavior of the scattering cross sections
are determined by the parton cascade from incoming par-
ticles or, in other words, by their wavefunction on the light
cone. For a large invariant energy s (the so-called Regge
limit), the amplitude is dominated by t-channel gluons
rather than quarks, because of their largest spin. As a
consequence gluons dominate in every channel, and quark
contributions will be neglected below.

We shall consider a semi-hard region where gluons can
be treated as soft with respect to the large invariant en-
ergy s, although still perturbative. It is known that in any
massless field theory scattering amplitudes are dominated
by IR contributions of two types, namely collinear and
soft singularities. This semi-hard region reveals soft glu-
ons contributions, which sum up into LLA. The physics
behind soft resummation is that the field of an ultrarel-
ativistic source can be treated as a state of almost real
particles while the vertex for real or virtual soft gluon
emission can be taken to be the same.

Let us denote by pA and pB the momenta of the col-
liding particles A and B. Neglecting their masses in the
high energy limit we can take p2

A = p2
B = 0 so that the

invariant energy reads s = 2pA · pB . The vectors pA, pB

can be used for the Sudakov decomposition of any vector
as follows: k = αpA + βpB + k⊥.

Each particle develops a parton cascade, so the scat-
tering of the incoming particles A and B could in principle
be reduced to elementary parton processes. In this paper,
we will focus on the structure of these cascades rather
than on the scattering itself. The complete description
of the cascade is a very complicated problem involving
all perturbative as well as non-perturbative effects. There
are certain limits where the cascade looks more simple.
A well known example is deep inelastic scattering. For
large virtuality Q2 the parton density obeys the DGLAP
evolution equation collecting the powers of αS lnQ2. Al-
though predictions based on the DGLAP evolution yield
good agreement with the present experimental data, this
approach fails for parametrically small Bjorken variables
x, when the powers of αS ln 1/x dominate. This is the re-
gion of Regge kinematics where the total invariant energy
is much greater than the other invariants, including the
virtuality of the deeply virtual photon. The leading ln 1/x
behavior of the hard scattering amplitude is given in this
region by the BFKL theory.

An important feature of the Regge kinematics is that
the partons are soft there in the sense that the main contri-
bution appears for small longitudinal variables, α, β � 1.
Only soft emissions from the external incoming or out-
going particles should be taken into account in this ap-
proximation. Since the momenta of all incident external
particles are supposed to be along the pA or pB direc-
tions, two peculiar gauges are of special interest, namely
the gauges pA · A = 0 and pB · A = 0. These gauges sup-
press soft emission from pA and pB lines respectively. In
the following we shall deal with emission from a pB line
in the gauge pA · A = 0.
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Fig. 1. Soft vertex for incoming line. The blob symbolizes any
amplitude connected to the incoming line

The vertex for emitting a soft particle is rather univer-
sal and determined by the classical current proportional
to the momentum of the source. It can be easily obtained,
for example, from the triple gluon vertex in the soft limit.
Consider emission off the incoming particle B, as illus-
trated in Fig. 1.

This incoming line is attached to an amplitude (shown
as a blob in Fig. 1) whose peculiar form plays no role so
long as we are dealing with soft emission. The soft vertex
reads

Γλ
c (k) = g

pB · ελ(k)
pBk − iδ

Tc = g
pB · ελ(k)
α s

2 − iδ
Tc, (1)

where ελ(k) is the helicity vector of the soft emitted or
absorbed gluon carrying momentum k and color index c.
The matrix T c depends on the representation of the color
group. For a gluon-like object it is expressed through the
structure constants, T c

a′a = ifa′ca, the indices c, a′, a being
in the adjoint representation.

The amplitude for the emission or absorption of n glu-
ons (see Fig. 2) is given by the product of the elementary
vertices,

Γµn,...µ1
cn,...c1

(k1, . . . kn)Aµn,cn
(kn) · · ·Aµ1,c1(k1) (2)

= (T cn · · ·T c1)a′ag
pB · Acn(kn)

(α1 + α2 + . . . + αn) s
2 − iδ

· · ·

×g
pB · Ac2(k2)

(α1 + α2) s
2 − iδ

g
pB · Ac1(k1)

α1
s
2 − iδ

.

Here the field A is the asymptotic free field

Aµ,c(x) =
1

(2π)3/2

∫
d3k

2k0

×
[
eikxελ

µ(k)a+
λ,c(k) + e−ikxελ

µ(k)aλ,c(k)
]
,
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Fig. 2. Amplitude for n gluon emission or absorption off an
incoming gluon-like object, represented as two thin lines
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whose positive and negative frequency part corresponds
respectively to the emission and absorption of gluons. Us-
ing the relation

1
α1

s
2 − iδ

= i
∫ ∞

−∞
dz eiα s

2 zθ(−z),

we get
∫

d4k1 · · ·d4kn

×Γµn,...µ1
cn,...c1

(k1, . . . kn)Aµn,cn
(kn) · · ·Aµ1,c1(k1)

=
(ig)n

n!

∫
dz1 · · ·dzn

×P
[
nB · A(znnB) · · ·nB · A(z1nB)

]
a′a,

with

Aµ(x) =
∫

d4k eikxAµ,c(k)T c

and where the symbol P means the conventional ordering
of the fields. The sum over the arbitrary number of soft
gluons is given by a P -exponent along the momentum di-
rection of the parent particle:

∑
n

∫
d4k1 · · ·d4kn

×Γµn,...µ1
cn,...c1

(k1, . . . kn)Aµn,cn
(kn) · · ·Aµ1,c1(k1)

= P exp
[
ig

∫ 0

−∞
dz nB · A(znB)

]
. (3)

A similar computation for an outgoing line results in re-
placing in the previous formula

∫ 0
−∞ with

∫ ∞
0 . These for-

mulae are nothing more than the Wilson line taken on the
trajectory along the momentum of the incoming (respec-
tively outgoing) particle. The scattering of heavy quarks
can be described through the interaction of Wilson lines
[17,18]. In the large s limit, following this approach one
can make contact with BFKL physics. In particular the
reggeon trajectory has been calculated up to two loop or-
der [17].

3 Inclusion of interaction
among emitted particles

The previous computation only takes into account emis-
sions from the parent line which is the incoming line
(respectively outgoing). The above formulae are strictly
speaking only valid for QED. They do not take into ac-
count the interaction between emitted particles. In QCD,
in the soft approximation, these corrections correspond to
subsequent decays of the emitted gluons. Indeed in this ap-
proximation only end line emissions contribute, and thus
to get the total cascade tree-level amplitude each field in
the P -exponent has to be replaced by the P -exponent it-
self. Generally this turns into a complicated non-linear

equation. Another problem is to incorporate loop correc-
tions. This second problem will be considered in Sect. 4.

The first problem, the partons’ subsequent decays,
simplifies in the Regge kinematics implying the longitu-
dinal momenta to be small in the formula (2), α, β � 1,
while

αs, βs � k2
⊥, αβs ∼ k2

⊥, (4)

where k⊥ is a typical transverse momentum scale. This
kinematics ensures the soft vertex to be of the form (1)
regardless from where a particular gluon is emitted off or
where it is absorbed in. Indeed, the emission of a gluon
with momentum k2 = αpA + βpB + k2⊥ off the parent
gluon carrying momentum k1 = apA + bpB + k1⊥ is again
given by a soft vertex similar to (1):

Γλ
c (k2) = g

k1 · ελ(k2)
k1 · k2

Tc. (5)

In the light cone gauge pA · A(x) = 0, the polarization
vector reads

ελ
µ(k) = ελ

A(k) · pAµ + ελ
⊥µ(k), (6)

with ∑
µ

ελ
⊥µ(k) · ελ′

⊥µ(k) = δλλ′
.

The emitted gluons are on-shell. Anyway, the gluons
which dominate the amplitude in the Regge limit are soft
and thus quasi-real; therefore the on-shell condition is
unessential. The transversality condition for these quasi-
real gluons reads k · ε = 0, which implies for the helicity
vector (6)

ελ
A(k) = 2

k⊥ · ελ
⊥(k)

βs
. (7)

In this soft gluon approximation, β � b and assuming the
typical transverse momenta to be of the same order, k2

1⊥ ∼
k2
2⊥, the numerator of the soft vertex is approximated as

k1 · ελ(k2) = bελ
A

s

2
− k1⊥ελ

⊥ ≈ bpB · ελ(k2).

Using the mass-shell conditions, a = k2
1⊥/bs, α =

k2
2⊥/βs, the denominator also simplifies as

k1 · k2 = (aβ + bα)
s

2
− k1⊥ · k2⊥ ≈ bα

s

2
.

It follows that the vertex (5) can be written as

Γλ
c (k2) = g

pB · ελ(k2)
pB · k2

Tc, (8)

which has exactly the universal form (1). Here, the vector
pB is the momentum of the source. The result (8) con-
firms the physical picture that soft emission is determined
by the total current of the source rather than by its inter-
nal structure. Since all k⊥ are assumed to be of the same
order, the strong β ordering considered here is a special
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Fig. 3. Illustration of the soft gluon
universality using the Jacobi identity

case of the more general strong angular ordering kinemat-
ics for which the soft factorization theorem was proven
[14].

With this universal vertex combined with the Jacobi
identity for the color matrices T c the emission of the new
soft particle from the “ends” a and c in Fig. 1 looks like if
it were effectively emitted off the line a′ at the left from
the particle c. This is illustrated in Fig. 3.

Since the emitted gluon is real, k2 = αβs − k2
⊥ = 0,

and thus, combining (6) and (7), the vertex (8) can be
rewritten in the form

Γλ
c (k) = gT c 2k⊥ · ε⊥

k2
⊥

. (9)

Repeating the new emissions from all “ends” in the same
manner we come back to Fig. 2, where now the gluons are
ordered according to their β value, the smaller β being on
the left of the largest ones.

Note that the decreasing order of the β variables,

β1 � β2 � · · · � βn, (10)

implies in the Regge kinematics an increasing order of the
α,

α1 � α2 � · · · � αn,

so that α1 + α2 � α2, α1 + · · · + αn � αn. This property
allows one to present the resulting soft cascade tree am-
plitude through an ordered exponent in momentum space,

Φtree = Pβ exp
{∫ 1

xλ

dβ d2k⊥V (β, k⊥)
}

,

with
V (β, k⊥) = V +(β, k⊥) + V −(β, k⊥) (11)

and

V ±(β, k⊥) =
g

(2π)
3
2

1
2β

pB · ελ(β, k⊥)
pB · k

a±
λ,c(β, k⊥)T c. (12)

In the gauge pA · A = 0, this equation reduces to

V ±(β, k⊥) =
2gT c

(2π)
3
2

1
2β

k⊥ · ελ
⊥(β, k⊥)
k2

⊥
a±

λ,c(β, k⊥), (13)

where we have used (9). This expression incorporates
both emission and absorption of the partons described
by the light cone creation, a+

λc(β, q⊥), and annihilation,
aλc(β, q⊥) ≡ a−

λc(β, q⊥) = a+
λc(−β, −q⊥), operators la-

belled by the longitudinal momentum fraction β ≥ 0,
transverse momentum q⊥, and polarization and color in-
dices λ and c, satisfying[

aλc(β, q⊥), a+
λ′c′(β′, q′

⊥)
]

= 2βδλλ′δcc′δ(β − β′)δ(2)(q⊥ − q′
⊥).

The ordering symbol Pβ means that the fields A(β)
with the smallest β value are on the left from the fields
with the largest ones. The minimal value β = xλ plays the
role of an infrared cut-off in the amplitude Φtree. Note that
in the case of an incoming line, the “time” variable z in the
P -exponent (3) is Fourier conjugated to the longitudinal
Sudakov variable α, and thus ordered oppositely. Since
on the other hand, for mass-shell particles α ∼ 1/β, it
turns out that |z| ∼ β. Thus, the P -exponent defined with
respect to z is in accordance with Pβ .

When the cut-off value is lowered, that is when we
take x′

λ < xλ, it allows for the emission or absorption of
an extra soft particle whose longitudinal momentum lies in
the interval x′

λ < β < xλ. This yields the new amplitude

Φ′
tree =

[
1 +

∫ xλ

xλ−δxλ

dβ

∫
d2k⊥V (β, k⊥)

]
Φtree, (14)

the amplitude Φtree standing as the source for the new soft
particles. The whole tree amplitude can be symbolically
presented as an infinite product of elementary emissions
or absorptions in the infinitesimal intervals ∆x,

Φtree =
1∏

xλ

[
1 +

∫ x

x−∆x

dβ

∫
d2k⊥V (β, k⊥)

]
. (15)

4 Virtual corrections and evolution
of the cascade wavefunction

The previous form is convenient to include the virtual con-
tributions. Besides the amplitude to emit or absorb a real
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gluon at each elementary step there is an amplitude for the
case when the new phase volume in the longitudinal space
remains non-occupied. In other words this means that the
emitted gluon is reabsorbed at the same step, which corre-
sponds to a loop correction. It does not change the number
of particles, but it is responsible for the renormalization
of the whole state.

Despite the composite internal structure of the whole
system of cascade and source, within the soft emission
approach this system looks like the source carrying the
given momentum and color. The virtual correction results
into self-energy insertion into the source propagator. In
particular, if the source is gluon-like, then the full system
looks like a gluon. In this case, the virtual correction re-
sults in a self-energy insertion in the gluon propagator. In
LLA and for the cascade plus source system of momentum
q � pB + q⊥, the propagator of this system is modified as

Dµν(q) =
1
q2

[
δµν − qµpν

A + qνpµ
A

pA · q

]
1

1 − π(xλ, q2
⊥)

,

with the function π(xλ, q2
⊥) determining the z-factor, or

normalization of the state. To keep the value of the norm
fixed, the cascade plus source wavefunction is multiplied
by z

−1/2
[xλ,1](q⊥), where q⊥ is the total transverse momen-

tum of the system whose constituents fill the interval of
longitudinal momenta [xλ, 1],

z[xλ,1](q⊥) =
1

1 − π(xλ, q2
⊥)

.

The contribution of the soft gluons appearing at the
next evolution step in the interval [xλ − δxλ, xλ] should
be compensated by the factor z

−1/2
[xλ−δxλ,xλ](q⊥). Basically

for a finite interval one can write a loop expansion of the
form

z[xλ−δxλ,xλ](q⊥) = 1 +
∑
n>1

zn(q⊥) lnn xλ

xλ − δxλ
,

only the first variation determining the evolution equa-
tion,

z
−1/2
[xλ−δxλ,xλ](q⊥) = 1 − ω(q⊥)

δxλ

xλ
+ O

(
δxλ

xλ

)2

. (16)

In LLA the function ω(q⊥) is given by a one loop diagram
calculated in the axial gauge.

Before discussing an explicit form of the virtual contri-
bution note that the momentum q⊥ in the argument of ω
is the total transverse momentum of the system of cascade
and source, which emit a soft particle as a whole. Intro-
ducing the total momentum operator P̂⊥, ω(P̂⊥) obviously
gives ω(q⊥) when acting on a whole system of cascade plus
source state of total momentum q⊥. Thus, in a similar way
as in the tree case (see (14)), one step of evolution reads

Φ(xλ − δxλ)

=
[
1 − ω(P̂⊥)

δxλ

x
+

∫ x

x−δxλ

dβ

∫
d2k⊥V (β, k⊥)

]

×Φ(xλ).

The full cascade S matrix can be symbolically written
through the elementary steps product1

Φ(xλ) (17)

=
1∏

xλ

[
1 − ω(P̂⊥)

∆x

x
+

∫ x

x−∆x

dβ

∫
d2k⊥V (β, k⊥)

]
,

where the brackets are ordered from the smallest β values
at the left to the greatest ones at the right. The operator

Φ+(xλ)

=
1∏

xλ

[
1 − ω(P̂⊥)

∆x

x
+

∫ x

x−∆x

dβ

∫
d2k⊥V +(β, k⊥)

]

acting on the vacuum creates the soft constituents of the
cascade, while the operator

Φ+(xλ, p⊥) =
1

(2π)2

∫
d2ze−ip⊥zeiP̂ zΦ+(xλ)e−iP̂ z

picks out the components with a fixed transverse momen-
tum. Let us introduce the operator b+

σ,a(pB , q⊥) for creat-
ing the bare source, having transverse momentum q⊥, and
helicity and color indices σ and a, and denote this state
by |pB , q⊥, a, σ〉s = b+

σ,a(pB , q⊥)|0〉. Then the state

|pB , xλ, q⊥, a, σ〉
=

∫
d2p⊥Φ+(xλ, p⊥)b+

σ,a(pB , q⊥ − p⊥)|0〉

describes the system of cascade plus source with given to-
tal transverse momentum q⊥, cut-off value xλ, and source
helicity and color. The total tranverse momentum of the
cascade is given by p⊥. The operator P̂⊥ acting on the
right results at each step in the transverse momentum of
the total system at the previous cut-off value. The opera-
tor Φ is similar to the non-abelian coherent state operator
which was elaborated in [15]. Indeed, as discussed above,
our operator Φ is constructed through the β ordered prod-
uct in the same manner as the non-abelian coherent state
operator is constructed through an energy ordered prod-
uct.

Changing xλ we evidently have for the variation of the
cascade plus source state

δ|pB , xλ, q⊥, a, σ〉
= −δxλ

xλ
ω(q⊥)|pB , q⊥, xλ, a, σ〉 (18)

+

xλ∫
xλ−δxλ

dβ

∫
d2k⊥V +(β, k⊥)|pB , (q − k)⊥, xλ, a, σ〉.

1 Here δxλ denotes the variation of the cut-off value while ∆x
is taken as the notation of an infinitisemal step in the infinite
product representation of the cascade S matrix. Principally
one can put δxλ = ∆x.
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Fig. 4. Variation of the density with respect to the cut-off, in
the case xQ � xλ. The double thick line stands for the system
of source plus gluon cascade

Let Q be an operator, which probes the parton distri-
bution in the cascade, for instance,2

Q =
∫ 1

xQ

dx

2x
d2l⊥f(x, l⊥)a+

σc(x, l⊥)aσc(x, l⊥) (19)

with a weight function f(x, l⊥). The average value is gen-
erally expressed through the density function nf , depend-
ing on the cascade total transverse momentum and cut-off,

〈pB , xλ, q⊥, a, σ|Q|pB , xλ, q′
⊥, a′, σ′〉

= δa,a′δσ,σ′δ(2)(q⊥ − q′
⊥)nf (xλ, q⊥).

Its evolution with xλ value is determined by the vari-
ation of the state (18). If we suppose that the operator
Q has a natural cut-off xQ � xλ, then the new emitted
gluon does not affect the operator vertex (the operators
aλ,c(β, k⊥) commute with Q for xλ − δxλ < β < xλ) and
the variation of the matrix element decays into the sum

∆nf = ∆1nf + ∆2nf ,

as illustrated in Fig. 4.
The first term is given by the extra particle ampli-

tude squared times the average of the operator Q over the
rest part of the amplitude corresponding to the previous
cut-off value xλ and recoil transverse momentum. It cor-
responds to the first diagram in Fig. 4 and can be written
symbolically

∆1nf (xλ, q⊥) (20)

= 〈pB , xλ, q⊥ − k⊥, a, σ|aλ,cQa+
λ,c|pB , xλ, q′

⊥ − k⊥, a′, σ′〉,

or in explicit form

∆1nf (xλ, q⊥)

= 2Nc
g2

(2π)3
ln

xλ

x′
λ

∫
d2k⊥
k2

⊥
nf (xλ, q⊥ − k⊥). (21)

Note that the previous equation is written in the case
where the source is in the adjoint representation. In the

2 In principle the operator Q could probe both the cascade
content and the source, without modifying the following dis-
cussion. One could add to Q a term

1/2
∫

d2l⊥f ′(l⊥)b+
σ,c(pB , l⊥)bσ,c(pB , l⊥)

acting on the source. If the source is gluon-like this is the same
as to include in the weight function f(x, l⊥) in (19) a term
proportional to δ(1 − x).

general case, Nc should be replaced by the Casimir oper-
ator of the corresponding representation.

It is important to note that in soft loop calculations
gluons can be considered as real, in accordance with the
fact that there is almost no difference between real and
virtual massless soft particles. Indeed, consider the loop
where one single gluon is emitted and reabsorbed, as illus-
trated in Fig. 4. The α integral which occurs in the loops
can be closed around the pole of the emitted gluon prop-
agator. For, using the same technique as the one leading
to the eikonal type expression (1), the denominator of the
integrand reads (α− iδ)2(αβs−k2

⊥ +iδ) for the first graph
of Fig. 4 or (α− iδ)(αβs−k2

⊥ +iδ) for the second and third
graphs. Both denominators leave the singularities in the α
plane on the opposite side of the real axis. The numerator
of the gluon propagator in the light cone gauge reads

dµν(k) = −ελ
µ(k)ελ

ν (k) − 4k2

β2s2 pAµpAν .

When performing the α integral, if among the two poles
one chooses to close around the physical pole of the gluon,
the second term drops out since it cancels the α singularity
in the propagator. Thus, only the first term remains. One
then immediately gets the soft universal vertex squared
(9) for the first graph.

The second term in the variation arises due to virtual
corrections,

∆2nf (xλ, q⊥) = −2 ln
xλ

x′
λ

ω(q⊥). (22)

It is illustrated by the second and third diagrams of Fig. 4.
Differentiating with respect xλ we arrive at the evolu-

tion equation

xλ
∂

∂xλ
nf (xλ, q⊥)

= −2Nc
g2

(2π)3

∫
d2k⊥

(q − k)2⊥
nf (xλ, k⊥)

+ 2ω(q⊥)nf (xλ, q⊥).

In the case where xQ is smaller than the typical value
of xλ, there appears an additional term when the extra
soft gluon operator is contracted with the operator Q, as
shown by the additional fourth diagram in Fig. 5. It gives
the following contribution to the variation of nf :

∆3nf (xλ, q⊥) = 2Nc
g2

(2π)3
f(xλ, q⊥) ln

xλ

x′
λ

. (23)

The full inhomogeneous equation thus reads

xλ
∂

∂xλ
nf (xλ, q⊥)

= 2Nc
g2

(2π)3

∫
d2l⊥
l2⊥

f(xλ, l⊥) ln
xλ

x′
λ

− 2Nc
g2

(2π)3

∫
d2k⊥

(q − k)2⊥
nf (xλ, k⊥)
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+ 2ω(q⊥)nf (xλ, q⊥). (24)

If one is interested in the density number of a gluon of
momentum r⊥ (integrating over longitudinal momentum
fraction from the cut-off xλ to 1), the weight function f
in (19) should be chosen as

f(x, l⊥) =
1
2
δ2(l⊥ − r⊥), (25)

the 1/2 factor being related to the average over gluon
transverse polarization.

In that case, (24) turns into the equation

xλ
∂

∂xλ
G(xλ, r⊥, q⊥)

= −2Nc
g2

(2π)3
1
r2
⊥

G0(r⊥, q⊥)

− 2Nc
g2

(2π)3

∫
d2k⊥

(q − k)2⊥
G(xλ, r⊥, k⊥)

+ 2ω(q⊥)G(xλ, r⊥, q⊥), (26)

where

G0(r⊥, q⊥) =
1
2
δ2(q⊥ − r⊥).

The inhomogeneous term, which is of lowest order, can be
interpreted as the initial gluon contribution corresponding
to the emission of one gluon off the bare source. It thus
contains a factor Ncg

2/(2π)3, multiplying 1/r2
⊥ which is

reminiscent of the two t-channel gluon propagators (one
being compensated by a polarization contribution after
angular averaging of k⊥).

Equation (26) looks like a Bethe–Salpeter equation
with a kernel K acting from below, which is illustrated
in Fig. 6.

Actually the density G is only a function of p⊥ − r⊥
due to translational invariance. It means that (26) could
equally be written as a Bethe–Salpeter equation with a
kernel acting from above, by just an exchange between
the variables r⊥ and p⊥.

A natural physical value for the IR cut-off xλ is xλ ∼
µ2/s where µ2 is some typical scale for tranverse momen-
tum. This follows from the Regge kinematics (4).

xλ
∂

∂xλ
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Fig. 6. Evolution equation for the integrated over x gluon
density in a cascade. The double line stands for the source

Using (19) and (25), one can finally obtain the unin-
tegrated parton density from G as

g(xλ, r⊥, q⊥)

=
1

2xλ
〈pB , xλ, q⊥, a, σ|1

2

∑
λ,c

a+
σ,caσ,c|pB , xλ, q′

⊥, a′, σ′〉

= − ∂

∂xλ
G(xλ, r⊥, q⊥). (27)

In the DGLAP case the unintegrated parton distributions,
which depend both on the longitudinal and tranverse mo-
menta, are related to the derivative of the structure func-
tions with respect to the transverse cut-off. Similarly we
have to consider the derivative with respect to xλ of the
function G(xλ, r⊥, p⊥) in order to get the unintegrated
distribution. In (27), r⊥ is the transverse momentum at
which the parton density is measured while q⊥ is the to-
tal transverse momentum of the cascade plus source. The
function g satisfies the homogeneous equation

xλ
∂

∂xλ
(xλg(xλ, r⊥, q⊥))

= −2Nc
g2

(2π)3

∫
d2k⊥

(q − k)2⊥
xλg(xλ, r⊥, k⊥)

+ 2ω(q⊥)xλg(xλ, r⊥, q⊥). (28)

Both (26) and (28) have the same form as the BFKL
equation for t = 0, although they describe gluon densities
rather than high energy scattering amplitudes. Because of
the universal nature of the soft vertex, these equations for
the gluon densities can be written for any source (quark,
gluon, ...). The only modification will be in the color factor
Nc which should be replaced by the Casimir operator of
the representation of SU(Nc) to which the source belongs
(CF , CA, ...). The same replacement should be made for
the ω term, as will be shown in the next section.

5 Computation of ω

5.1 Evaluation of ω based on the gluon cascade
universality in the case of a gluon-like source

The expression (21) provides a simple way to find the
function ω(q⊥) based on universality, in the peculiar case
where the source is gluon-like. From the point of view of
an emitted gluon, the whole system corresponding to the
previous cut-off value plays the role of the source, and the
z-factor is prescribed to this whole system. On the other
hand, this whole system looks like a gluon (in the case
where the bare source is gluon-like). Thus, the z-factor
for the whole system and for a single gluon should have
the same functional form. What we need is the virtual
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correction for the whole system, but we shall calculate
instead the z-factor of the dressed emitted gluon. The
inclusion of the z-factor corresponds to the replacement
aλ,σ → z1/2aRλ,σ in the expression (20). With the z-factor
included (21) reads

∆1nf (xλ, q⊥)

= 2Nc
g2

(2π)3
ln

xλ

xλ − δxλ

×
∫

d2p⊥
p2

⊥
z[xλ−δxλ,xλ](p⊥) nf (xλ, q⊥ − p⊥). (29)

On the other hand there is a dual description of the same
dressed gluon as a composite cascade state spread over the
interval [xλ −δxλ, xλ] and carrying transverse momentum
p⊥. The two particle component of this state is given by
the amplitude to emit two soft gluons off the source (which
is the whole system corresponding to the previous cut-off
value),

|pB , q⊥, xλ − δxλ, aσ〉2

= igfac1d igfdc2b

xλ∫
xλ−δxλ

dx

2x

x∫
xλ−δxλ

dβ

2β

∫
d2k⊥

(2π)3/2 2
k⊥ · εσ2

k2
⊥

× 1
(2π)3/2 2

(p − k)⊥ · εσ1

(p − k)2⊥
×a+

σ2c2
(β, k⊥)a+

σ1c1
(x, p⊥ − k⊥)

×|pB , q⊥ − p⊥, xλ, b, σ〉,
the gluons being ordered with respect to their longitudinal
momenta,

xλ − δxλ < β < x < xλ,

which is reflected in the integration limits.
Averaging the operator with this amplitude we arrive

at the following expression for the gluon density variation:

∆1nf (xλ, q⊥)

= 2Nc
g2

(2π)3
1
2

ln2 xλ

xλ − δxλ

∫
d2p⊥
p2

⊥
nf (xλ, q⊥ − p⊥)

× 2Nc
g2

(2π)3

∫
d2k⊥

p2
⊥

k2
⊥(p − k)2⊥

.

Note that the double integration in x and β results in
1/2 ln2 xλ

xλ−δxλ
. This factor 1/2 reflects the Bose symmetry

of the two gluons system. Recalling (16) and (29) we get

2ω(p⊥) = Nc
g2

(2π)3

∫
d2k⊥

p2
⊥

k2
⊥(p − k)2⊥

. (30)

5.2 Direct calculation of ω through the one loop
self-energy of any source

The formula (30) can be compared with a direct calcu-
lation of the polarization operator. The exact one loop

result for the gluon case in the dimensional regularization
(D = 2 + 2ε) and axial gauge is

π(p⊥) = −2Nc
g2

8π2 Γ
(

1 − D

2

)
(31)

×
∫ 1

0
dβ

[
β(1 − β)p2

⊥/4π
]D

2 −1(1 − β)K(β),

where

K(β) =
β

1 − β
+

1 − β

β
+ β(1 − β)

is the DGLAP kernel. The gluon self-energy is known to
coincide in the axial gauge with a Sudakov form factor
whose double logarithmic behavior originates from the
product of transverse and longitudinal divergences. The
latter one comes about when one gluon momentum in the
loop becomes soft, β → 0. To separate the longitudinal
logarithms needed in order to find the function ω(p⊥) we
keep only the singular piece in K(β) and cut the integral
in (31) at β = xλ, using dimensional regularization only
for tranverse divergence, which turns into

π1(xλ, p2
⊥) = −2Nc

g2

8π2 Γ
(

1 − D

2

) [
p2

⊥/4π
]D

2 −1 ln
1
xλ

= 2ω(p⊥) ln
1
xλ

. (32)

This results in

2ω(p⊥) = 2Nc
g2

8π2

[
1
ε

+ ln
p2

⊥
4π

+ γE

]
+ O(ε),

while the dimensionally regularized integral (30) gives

2ω(q⊥) = Nc
g2

8π2

[
q2
⊥/4π

]D
2 −1Γ

(
2 − D

2

)
Γ2

(
D
2 − 1

)
Γ(D − 2)

= 2Nc
g2

8π2

[
1
ε

+ ln
q2
⊥

4π
+ γE

]
+ O(ε). (33)

Thus, although the functions ω(p⊥) defined by (30) and
(32) look different their non-vanishing parts are equal.

Further, consider the renormalization of a heavy color
source of mass M belonging to a given representation of
SU(Nc), irrespective of its spin representation. Due to
classical current emission, the longitudinal divergent part
(regularized by xλ) of the source self-energy amounts to
the same expression:

πM (xλ, p2
⊥) = −2C

g2

8π2 Γ
(

1 − D

2

) [
M2 − p2

4π

]n
2 −1

ln
1
xλ

,

(34)
with source mass M and virtuality M2 − p2 � p2

⊥ regard-
less of the elementary or composite nature of the source.
In the case of an arbitrary source, the color factor C is
the appropriate Casimir operator of SU(Nc).

The obtained expression reveals another type of “uni-
versality” of ω. Namely, except for the color factor, ω is
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identical for any kind of color source. It means that the
reggeization of any source (electron [19,20], quark [21],
gluon [1]) is universal. However, the whole equation for
the scattering amplitude (not for the parton density) of
arbitrary objects in the Regge limit generally differs from
the BFKL equation (for example the quark–gluon scatter-
ing process with fermion exchange [21]).

6 QED cascade

The above treatment can be applied to the special case of
electrodynamics. To avoid any confusion, we want to em-
phasize that the equation which will be obtained only de-
scribes the distribution of soft photons in a charged source.
It has no direct relation to high energy scattering in the
Regge limit.

Generally speaking, the wavefunction of the source,
which could be any charged object, for instance an elec-
tron, is made of the bare source itself surrounded by a
cloud of soft photons. The operator Q can probe either
the source or photon component of the wavefunction. If
we introduce a cut-off for the longitudinal momentum of
the soft photons, we can study the effect of changing this
cut-off as we did for the QCD case. We get the same three
types of contributions as illustrated in Fig. 5, where the
wavy lines now represent photons.

The z-factor is related in this case to the renormaliza-
tion of the source, and can be obtained from (34). One
needs only to replace g by the electric charge Ze and put
C = 1. The real contribution is only due to the emission
off the source line, since the photon has no charge. In the
corresponding Wilson line (3), the ordering of the fields
is not important since they commute at equal light cone
time. It is related to the fact that in QED, the soft cascade
structure does not assume any additional β ordering (10).

The equation satisfied by the corresponding nf is the
same as (24), after performing the replacement g2Nc →
Z2e2. In the case of photon density, one gets

xλ
∂

∂xλ
Gγ(xλ, r⊥, q⊥)

= − Z2e2

(2π)3
δ2(q⊥ − r⊥)

r2
⊥

− 2
Z2e2

(2π)3

∫
d2k⊥

(q − k)2⊥
Gγ(xλ, r⊥, k⊥)

+ 2ω(q⊥)Gγ(xλ, r⊥, q⊥), (35)

where ω(q⊥) is obtained from the QCD case (see (30) and
(33)) by the same replacement g2Nc → Z2e2. A simi-
lar equation for the unintegrated photon density gγ could
be written. It is obtained from (28) after performing the
above modification.

These equations for the evolution of the densities have
just the same form as the BFKL equation for QCD, al-
though they have no direct relation with scattering since
the latter is governed by the QED pomeron which is made
of iterations of a kernel describing the elementary inter-
action process 2 → 2 t-channel photons through a quark
box [22,23].

Let us stress once more that contrary to the QCD case,
ω(q⊥) corresponds to the reggeization of the source and
not of the photon, which is of a different nature. In QCD,
in the case where the source is gluon-like, ω(q⊥) can be
associated either to the source or to the cascade. We have
used this property to get the expression for ω(q⊥). From
the point of view of source dressing, it is obtained through
the one loop gluon self-energy (see (32)). Equivalently, it
is obtained through the normalization of the wavefunction
(see (30)).

7 Cascade wavefunction

Let us now turn back to the amplitude (17). Despite
the symbolic character of the infinite ordered product it
can be presented in a closed form. Consider to this end
the amplitude to emit n quasi-real gluons with momenta
xn, q⊥n

, . . . , x1, q⊥1 , x1 > x2 > . . . > xn. It is given by the
matrix element

Γλn,cn,...,λ1,c1;σ′,σ;a′,a(xn, q⊥n, . . . , x1, q⊥1; q′
⊥, q⊥)

= 〈0|bσ′,a′(pB , q′
⊥)aλn,cn

(xn, q⊥n
) · · · aλ1,c1(x1, q⊥1)

×Φ+(xλ)b+
σ,a(pB , q⊥)|0〉. (36)

Expanding the brackets, the product in the Φ+(xλ) oper-
ator can be reorganized as

Φ+(xλ)

=
xn∏
xλ

[
1 − ω(P̂ )

∆x

x

] ∫ xn

xn−∆x

dβn

∫
d2k⊥n

V +(βn, k⊥n
)

×
xn∏

xn−1

[
1 − ω(P̂ )

∆x

x

]
· · ·

x2∏
x1

[
1 − ω(P̂ )

∆x

x

]

×
∫ x1

x1−∆x

dβ1

∫
d2k⊥1V

+(β1, k⊥1)
1∏
x1

[
1 − ω(P̂ )

∆x

x

]

+ · · ·
The terms which are not explicitly written give a zero

contribution to the matrix element (36) when performing
the contractions with a operators. Using the fact that

x1∏
x2

[
1 − ω(P̂ )

∆x

x

]
= exp

{
−

∫ x1

x2

dβ

β
ω(P̂ )

}

and that the operator P̂ results in the total momentum of
the state occurring to the right, we get for the amplitude

Γλn,cn,...,λ1,c1;σ′,σ;a′,a(x1, q⊥1, . . . , xn, q⊥n; q′
⊥, q⊥)

=
(

xλ

xn

)ω(q⊥n+···+q⊥1+q⊥)

Γλn
cn

(q⊥n)

×
(

xn

xn−1

)ω(q⊥n−1+···+q⊥1+q⊥)

Γλn−1
cn−1

(q⊥n−1) · · · (37)

× Γλ1
c1

(q⊥1)
(x1

1

)ω(q⊥)
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× 〈0|bσ′,a′(pB , q′
⊥)b+

σ,a(pB , q⊥)|0〉.

This formula, in the LLA approximation, provides all
information on the cascade wavefunction. It resembles
multi-reggeon formula but it includes only soft vertex.
Note that the component of the cascade wavefunction
without any real emission is nothing but the renormal-
ization of the source wavefunction,

√
Z =

(
1
x1

)−ω(q⊥)

, (38)

as we discussed in Sects. 5 and 6.

8 Relationship with Sudakov form factor

The simplest application of the formula (37) for the cas-
cade wavefunction is the calculation of the Sudakov form
factor in the double logarithmic approximation. Let us
consider the form factor of a source coupled to a colorless
current carrying the momentum transfer q, in the kine-
matics where Q2 ≡ −q2 is very large with respect to the
virtuality of the source. In this kinematics, it is conve-
nient to choose the incoming particle momentum as be-
ing pB + p⊥ and the outgoing as being pA + p⊥, with
q2 = −2pA · pB , as illustrated in Fig.7.

In the gauge pA · A = 0, this form factor only gets
contributions from virtual loops along a pB line. This is
identical to the Z factor defined in (38). The Sudakov form
factor SF thus reads

SF (p⊥) = Z = e−L, (39)

where

L = 2ω(p⊥) ln
1
xλ

. (40)

This formula has only a symbolic meaning since ω(p⊥)
has IR logarithmic collinear divergences, which are not
compensated by real emissions. However, Regge kinemat-
ics provides a natural cut-off for both collinear and soft
divergences. Indeed, combining (30) or (33) (where 1/ε
corresponds to ln p2

⊥) with (40) and using the condition
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Fig. 7. Sudakov form factor for a source coupled to a virtual
colorless object

βs > k2
⊥ (s = Q2), where k � βpB + k⊥, L should be

interpreted as

L = CF
αS

π

1∫
xλ

dβ

β

βQ2∫
p2

⊥

dk2
⊥

k2
⊥

. (41)

The infrared cut-off xλ is defined by the Regge kinematics
β > p2

⊥/s. L thus reduces to

L =
1
2
CF

αS

π
ln2 Q2

p2
⊥

. (42)

Since the source is quark-like, CA = Nc has been replaced
by CF in (30) or (33). One finally obtains

SF = e
− 1

2 CF
αS
π ln2 Q2

p2
⊥ . (43)

In the QED case, CF = 1 and αS turns into αe.m..
Note that (43) is a simple case of the general double

leading contribution arising from a cusp singularity, when
the particle changes its direction from pB to pA [16,24].

9 Conclusion

This paper is based on the ordering of longitudinal vari-
ables in soft cascades, which means energy ordering of
the emitted particles. It differs from the collinear approx-
imation which implies angular ordering [25] and which is
related to the conventional partonic DGLAP picture. We
have shown explicitly that the infrared evolution equation
for the parton density in the soft cascade is identical to
the forward BFKL equation. The DGLAP equation is an
evolution with respect to a transverse cut-off Q2 due to
collinear singularities, while in our case this evolution is
written in terms of a longitudinal cut-off, due to soft sin-
gularities.

Our approach is based on a kind of duality in the de-
scription of a source at high energy. From the viewpoint of
the soft vertex the source can be treated as a single par-
ticle with given momentum and color. On the other hand
it has an internal structure, a cloud of many soft gluons
surrounding it. It looks like a composite object with a
non-trivial wavefunction. Thus a rather simple interpre-
tation of reggeization as a manifestation of a soft cascade
structure appears in this picture. The trajectory ω(q⊥) is
nothing more than the source Z factor in the axial gauge.
Both in QCD and QED, this function is associated with
the charged source self-energy. It is universal in the sense
that it is the same for all sources, up to a global color
factor. In the DGLAP case the divergences occurring at
x → 1 are regulated by the 1/(x − 1)+ prescription, cor-
responding to UV Z-factors due to UV renormalization
of parton wavefunctions. In (26) and (28) the IR diver-
gences for k⊥ → 0 disappear because of virtual correc-
tions which can be treated as an IR renormalization of
the source wavefunction.
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The equations that we have obtained describe the evo-
lution of the gluon (or photon) density. The extension of
this approach for scattering amplitudes, for both the for-
ward and non-forward case, as well as for the generalized
leading log approximation [26–28], will be presented in a
forthcoming paper. It would also be interesting to study
more complicated structures like for example the triple
pomeron vertex.

Finally, let us emphasize that our treatment relies on
the resummation of s-channel soft gluons (or photons). It
is very similar to the dipole model, except that it does
not assume any large Nc limit. On the other hand, this
s-channel picture is very similar to the xBj → 1 limit in
DIS. This relation will be explored elsewhere.
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